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Queueing Systems and Models I Introduction

• Queues (or waiting lines) are EVERYWHERE!

• Queues are an unavoidable component of modern life.
• E.g., in hospital, stores, bank, call center (online service), etc.
• Although we don’t like standing in a queue, we appreciate the

fairness that it imposes.

• Queues are not just for humans, however.
• E.g., email system, printer, manufacturing line, etc.
• Manufacturing systems maintain queues (called inventories) of

raw materials, partly finished goods, and finished goods via the
manufacturing process.
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Queueing Systems and Models I Introduction

Figure: Queues in Hospital
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Queueing Systems and Models I Introduction

Figure: Queues in Store (from The Sun )
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Queueing Systems and Models I Introduction

Figure: Queues in Campus (for COVID-19 Nucleic Acid Test)
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Queueing Systems and Models I Introduction

Figure: Queues in Bank
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Queueing Systems and Models I Introduction

Figure: Queues in Bank (No requirement to stand physically in queues)
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Queueing Systems and Models I Introduction

Figure: Queue in Online Service
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Queueing Systems and Models I Introduction

Figure: Queue in Mail Server (from OASIS )
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Queueing Systems and Models I Introduction

Figure: Queue in Printer
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Queueing Systems and Models I Introduction

Figure: Queues (Inventories) in Manufacturing Line (from Estes )
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Queueing Systems and Models I Introduction

• Typically, a queueing system consists of a stream of
“customers” (humans, goods, messages) that
• arrive at a service facility;
• wait in the queue according to certain discipline;
• get served;
• finally depart.

• A lot of real-world systems can be viewed as queueing
systems, e.g.,
• service facilities
• production systems
• repair and maintenance facilities
• communications and computer systems
• transport and material-handling systems, etc.

• Queueing models are mathematical representation of queueing
systems.
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Queueing Systems and Models I Introduction

• Queueing models may be
• analytically solved using queueing theory when they are simple

(highly simplified); or
• analyzed through simulation when they are complex (more

realistic).

• Studied in either way, queueing models provide us a powerful
tool for designing and evaluating the performance of queueing
systems.

• They help us do this by answering the following questions
(and many others):

1 How many customers are there in the queue (or station) on
average?

2 How long does a typical customer spend in the queue (or
station) on average?

3 How busy are the servers on average?
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Queueing Systems and Models I Introduction

• Simple queueing models solved analytically:
• Get rough estimates of system performance with negligible

time and expense.
• More importantly, understand the dynamic behavior of the
queueing systems and the relationships between various
performance measures.

• Provide a way to verify that the simulation model has been
programmed correctly.

• Complex queueing models analyzed through simulation:
• Allow us to incorporate arbitrarily fine details of the system

into the model.
• Estimate virtually any performance measure of interest with

high accuracy.

• This lecture focuses on the classical analytically solvable
queueing models.
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Queueing Systems and Models I Characteristics & Terminology

• The key elements of a queueing system are the customers
and servers.
• The term customer can refer to anything that arrives and

requires service.
• The term server can refer to any resource that provides the

requested service.

• The term station means the entire or part of the system,
which contains all the identical servers and the queue.

• Suppose that there is only one queue in one station.

• Capacity is the maximal number of customers allowed in the
station.
• Number waiting in queue + number having service.
• Finite or infinite.
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Queueing Systems and Models I Characteristics & Terminology

• Single-station queueing system.
• Customers simply leave after service.
• E.g., customers arrive to buy coffee and then leave.

• Multiple-station queueing system (queueing network).
• Customers can move from one station to another (for different

service), before leaving the system.
• E.g., patients wait and get service at several different units

inside a hospital.

Server 1

Server 2

Server 3

Queue

Station

Arrival Departure

Station 1

Station 2

Station 3
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Queueing Systems and Models I Characteristics & Terminology

• The arrival process describes how the customers come.
• Arrivals may occur at scheduled times or random times.
• When at random times, the interarrival times are usually

characterized by a probability distribution.
• Customers may arrive one at a time or in batch (with constant

or random batch size).
• Different types of customers.

• An customer arriving at a station:
• if the station capacity is full:

- the external arrival will leave immediately (called lost);
- the internal arrival may wait in the previous station (may

block the previous server).

• if the station capacity is not full, enter the station:

- if there is idle server in the station, get service immediately;
- if all servers are busy, wait in the queue.
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Queueing Systems and Models I Characteristics & Terminology

• Queue discipline: Which customer to serve first.
• First-in-first-out (FIFO), or first-come-first-served (FCFS).
• Last-in-first-out (LIFO), or last-come-first-served (LCFS).
• Shortest processing time first.
• Service according to priority (more than one customer types).

• Queue behavior: Actions of customers while waiting.
• Balk: leave when they see that the line is too long.
• Renege: leave after being in the line when they see that the

line is moving too slowly.

• Service time is the duration of service in a server.
• Constant or random duration.
• May depend on the customer type.
• May depend on the time of day or the queue length.
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Queueing Systems and Models I Characteristics & Terminology

• When without specification, the queueing models considered
in this lecture shall satisfy the following:

1 One customer type.
2 Random arrivals (i.e., random interarrival times, iid.).
3 No batch (or say, batch size is 1).†

4 One queue in one station.
5 First-come-first-served (FCFS).
6 No balk, no renege.
7 Random service time (depends on nothing else), iid.

• Even so, it is not that easy to analyze the queueing models!

†
1+2+3 ⇒ The arrival process is a renewal process.
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Queueing Systems and Models I Kendall Notation

• Canonical notational system proposed by Kendall (1953) :
X/Y/s/K.

• X represents the interarrival-time distribution.

- M : Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

• Y represents the service-time distribution.

- Same letters as the interarrival times.

• s represents the number of parallel servers.

- Finite value.
- For infinite number of servers, s is replaced by ∞.

• K represents the station capacity.

- Finite value.
- For infinite capacity, K is replaced by ∞, or simply omitted.

• Examples: M/M/1, M/G/1, M/M/s/K.
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Poisson Process I Definition

• A stochastic process {N(t), t ≥ 0} is said to be a counting
process if N(t) represents the total number of arrivals that
have occurred up to time t.

𝑡

𝑁(𝑡)

0

2

4

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

• Let {Xn, n ≥ 1} denote the interarrival times:
• X1 denotes the time of the first arrival;
• For n ≥ 2, Xn denotes the time between the (n− 1)st and the
nth arrivals.
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Poisson Process I Definition

• Definition 1. The counting process {N(t), t ≥ 0} is called a
Poisson process with rate λ, λ > 0, if:
• N(0) = 0;
• The process has independent and stationary increments;
• For t > 0, N(t) ∼ Pois(λt), i.e.,

P(N(t) = n) = e−λt
(λt)n

n!
, n = 0, 1, 2, . . . .

• Independent Increments: The numbers of arrivals in disjoint
time intervals are independent.

• Stationary Increments: The distribution of number of arrivals
in any time interval depends only on the length of time
interval, i.e., for s < t, the distribution of N(t)−N(s)
depends only on t− s.

Poisson process ⊂ renewal process ⊂ counting process.
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Poisson Process I Definition

• Definition 2. The counting process {N(t), t ≥ 0} is called a
Poisson process with rate λ, λ > 0, if:
• N(0) = 0;
• The process has independent and stationary increments;
• P(N(t) = 1) = λt+ o(t);
• P(N(t) ≥ 2) = o(t).

• Definition 3. The counting process {N(t), t ≥ 0} is called a
Poisson process with rate λ, λ > 0, if:
• N(0) = 0;
• {Xn, n ≥ 1} is a sequence of iid random variables, and
Xn ∼ Exp(λ).

• Definition 1, Definition 2 and Definition 3 are equivalent.
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Poisson Process I Properties

• Question 1: When will the next appear?

𝑡0
𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

Standing here, ask, when will the 3rd arrival occur?

𝑎 ？

P(X3 − a > x|X3 > a) =
P(X3 − a > x,X3 > a)

P(X3 > a)

=
P(X3 > a+ x,X3 > a)

P(X3 > a)

=
P(X3 > a+ x)

P(X3 > a)

=
e−λ(a+x)

e−λa
= e−λx. (Not related to a!)

• The Poisson process has no memory! (equivalent to the
independent and stationary increments assumption)
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Poisson Process I Properties

• Let Sn = X1 +X2 + · · ·+Xn be the arrival time of the nth
arrival.

• Question 2: If I only know there are n arrivals up to time t,
what can I say about the n arrival times S1, . . . ,Sn?

• A simplified case:

𝑡0

I’m only told that up to time 𝑡, one arrival has occurred.
What is the distribution of that arrival time 𝑆1 = 𝑋1 ?

• Intuition:
• Since Poisson process possesses independent and stationary

increments, each interval of equal length in [0, t] should have
the same probability of containing the arrival.

• Hence, the arrival time should be uniformly distributed on [0, t].
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Poisson Process I Properties

Proof.

P{X1 < s|N(t) = 1} = P{X1 < s,N(t) = 1}
P{N(t) = 1}

=
P{1 arrival in [0, s), 0 arrival in [s, t)}

P{N(t) = 1}

=
P{1 arrival in [0, s)}P{0 arrival in [s, t)}

P{N(t) = 1} (independent)

=
P{N(s) = 1}P{N(t− s) = 0}

P{N(t) = 1} (stationary)

=
e−λsλse−λ(t−s)

e−λtλt

=
s

t
. �

• Remark: This result can be generalized to n arrivals.
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Poisson Process I Properties

Property (Conditional Distribution of Arrival Times)

Given that N(t) = n, the n arrival times S1, . . . ,Sn have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, t).

• Illustration:
Given , how can I generate a sample of ? 

1. Uniformly and independently sample points on .
2. From small to large, call them .

iid samples of uniform RV

• This is very nice for simulation!
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Single-Station Queues I Notations

• Let L(t) denote the number of customers in the station at
time t.

20

3

T 5 20

L(t)

t864 1816141210

2

1

Figure: Illustration of L(t) (from Banks et al. (2010) )

• Let L̂(T ) denote the (time-weighted) average number of
customers in the station up to time T :

L̂(T ) := 1
T

∫ T
0 L(t)dt.
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Single-Station Queues I Notations

• Another expression of L̂(T ): Let Tn denote the total time
during [0,T ] in which the station contains exactly n customers.

20

3

T 5 20

L(t)

t4 6 8 10 12 14 16 18

2

1
T1 T1

T0 T0

T1 T1

T2 T2

T3

Figure: Illustration of L(t) (from Banks et al. (2010) )

• L̂(T ) := 1
T

∫ T
0 L(t)dt = 1

T

∑∞
n=0 nTn =

∑∞
n=0 n

(
Tn
T

)
.
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Single-Station Queues I Notations

• Suppose during time [0,T ], totally N(T ) customers have
entered the station, and let W1,W2, . . . ,WN(T ) denote the

time each customer spends in the station up to time T .†

• Let Ŵ (T ) denote the average sojourn time (逗留时间) in the
station up to time T :

Ŵ (T ) :=
1

N(T )

N(T )∑
i=1

Wi.

• In a similar way, we can also define
• L̂Q(T ) – The average number of customers in the queue up to

time T .

• ŴQ(T ) – The average waiting time in the queue up to time T .

†
The time includes both the waiting time in queue and the time in server. The part after T is not counted.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2023 (full-time) 24 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Single-Station Queues I Notations

• Now we consider the long-run measures.
• L – The long-run average number of customers in the station:

L := lim
T→∞

L̂(T ).

• W – The long-run average sojourn time in the station:

W := lim
T→∞

Ŵ (T ).

• LQ – The long-run average number of customers in the queue:

LQ := lim
T→∞

L̂Q(T ).

• WQ – The long-run average waiting time in the queue:

WQ := lim
T→∞

ŴQ(T ).

• Question: When will L, W , LQ and WQ exist (and <∞)?
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Single-Station Queues I Notations

• We also define the limiting probability that there will be
exactly n customers in the station as time goes to infinity:

Pn := lim
t→∞

P{L(t) = n}, n = 0, 1, 2, . . . .

• Question: When will Pn exist?

• Moreover, for an arbitrary X/Y/s/K queue
• Let λ denote the arrival rate, i.e.,

E[interarrival time] =
1

λ
.

• Let µ denote the service rate in one server, i.e.,

E[service time] =
1

µ
.
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Single-Station Queues I General Results

• Question: When will L, W , LQ, WQ and Pn exist?

• Answer: When the queue is stable.†

• Question: When will the queue be stable?!

Theorem 1 (Condition of Stability)

For an X/Y/s/∞ queue (i.e., infinite capacity) with arrival
rate λ and service rate µ, it is stable if

λ < sµ.

And, an X/Y/s/K queue (i.e., finite capacity) will always
be stable.

†
That is to say, the underlying Markov chain is positive recurrent.
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Single-Station Queues I General Results

• Recall that Pn := limt→∞ P{L(t) = n}, n = 0, 1, 2, . . ..

• Pn is also called the probability that there are exactly n
customers in the station when it is in the steady state.
• Since the system is stable and run for infinitely long time, it

should enters some steady state (i.e., has nothing to do with
the initial state).

• L can also be written as L :=
∑∞

n=0 nPn (see next slide).
• L is also called the expected number of customers in the

station in steady state;
• W is also called the expected sojourn time in the station in

steady state;
• LQ is also called the expected number of customers in the

queue in steady state;
• WQ is also called the expected waiting time in the queue in

steady state.
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Single-Station Queues I General Results

• Recall that Pn := limt→∞ P{L(t) = n}, n = 0, 1, 2, . . ..

• It turns out that, when the queue is stable, Pn also equals the
long-run proportion of time that the station contains exactly n
customers,† i.e., with probability 1, for all n,

Pn = lim
T→∞

amount of time during [0,T ] that station contains n customers

T
.

• Recall L̂(T ) := 1
T

∫ T
0 L(t)dt =

∑∞
n=0 n

(
Tn
T

)
, then

L := lim
T→∞

L̂(T ) = lim
T→∞

∞∑
n=0

n

(
Tn
T

)

=

∞∑
n=0

lim
T→∞

n

(
Tn
T

)
(by DCT)

=

∞∑
n=0

nPn.

†
A sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.
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Single-Station Queues I Little’s Law

• Little’s Law (守恒方程) is one of the most general and
versatile laws in queueing theory.
• It is named after John D.C. Little, who was the first to prove a

version of it, in 1961.
• When used in clever ways, Little’s Law can lead to remarkably

simple derivations.

Theorem 2 (Little’s Law – Empirical Version)

Define the observed entering rate λ̂ := N(T )/T , then

L̂(T ) = λ̂Ŵ (T ), L̂Q(T ) = λ̂ŴQ(T ).
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Single-Station Queues I Little’s Law

• Verify Little’s Law.

20

3

T 5 20

L(t)

t4 6 8 10 12 14 16 18

2

1
T1 T1

T0 T0

T1 T1

T2 T2

T3

20

3

T 5 20

L(t)

t4 6 8 10 12 14 16 18

2

1

W1

W3

W4

W3

W4

W4

W5W2

Figure: Illustration of L(t) and Wi (from Banks et al. (2010))

λ̂ = N(T )/T = 5/20 = 0.25.

Ŵ (T ) = 1
N(T )

∑N(T )
i=1 Wi = 1

5 (2 + 5 + 5 + 7 + 4) = 23
5 = 4.6.

L̂(T ) = 1
T

∑∞
n=0 nTn = 1

20 (0× 3 + 1× 12 + 2× 4 + 3× 1) = 23
20 = 1.15.

So, λ̂Ŵ (T ) = 0.25× 4.6 = 1.15 = L̂(T ). (Why it always holds?)
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Single-Station Queues I Little’s Law

• Verify Little’s Law.
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Figure: Illustration of L(t) and Wi (from Banks et al. (2010))
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• Why it always holds?

L̂(T ) = 1
T

∑∞
n=0 nTn = 1

T × area.

λ̂Ŵ (T ) = N(T )
T

1
N(T )

∑N(T )
i=1 Wi = 1

T

∑N(T )
i=1 Wi = 1

T × area.

So, L̂(T ) = λ̂Ŵ (T ) always holds.

• The same argument for L̂Q(T ) = λ̂ŴQ(T ).
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Single-Station Queues I Little’s Law

Theorem 3 (Little’s Law – Limit/Expectation Version)

For a stable queue, let λ∗ denote the arrival rate or entering
rate, then

L = λ∗W , LQ = λ∗WQ.

Caution: When λ∗ is the arrival rate, the time average (W , WQ)
is based on all customers (who enter the station or are lost); When
λ∗ is the entering rate, the time average is only based on the
customers who enters the station.

• Some Remarks:
• For a customer who is lost (due to the finite capacity), he

spends 0 amount of time in the station (or queue).
• Once we know anyone of L, W , LQ and WQ, we can compute

the rest using Little’s Law.
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Single-Station Queues I M/M/1 Queue

• M/M/1 Queue†

• The interarrival times are iid random variables with Exp(λ)
distribution, that is to say, customers arrive according to a
Poisson process with rate λ.

• The service times are iid random variables with Exp(µ)
distribution.

• The customers are served in an FCFS fashion by a single server.
• The capacity is unlimited, i.e., waiting space is unlimited.
• M/M/1 queue is stable if and only if λ < µ.
• Due to unlimited capacity, arrival rate = entering rate.

• We now want to compute all the measures Pn, L, W , LQ and
WQ.

†
M/M/1 Queue ⊂ Birth and Death Process with Infinite Capacity ⊂ Continuous-Time Markov Chain.
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Single-Station Queues I M/M/1 Queue

• Recall that L can be computed via L =
∑∞

n=0 nPn, where Pn
has two interpretations:
• Long-run proportion of time that the station contains exactly
n customers;

• Probability that there are exactly n customers in the station as
time goes to infinity (or equivalently, in the steady state).

• Define the state as the the number of customers in the
system.

• The state space diagram is as follows:

0 1 2 · · · n− 1 n n+ 1 · · ·
λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ
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Single-Station Queues I M/M/1 Queue

0 1 2 · · · n− 1 n n+ 1 · · ·
λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Key Observation 1

Rate at which the process leaves state n
= Rate at which the process enters state n.

Heuristic Proof.

• In any time interval, the number of transitions into state n must
equal to within 1 the number of transitions out of state n. (Why?)

• Hence, in the long run, the rate into state n must equal the rate out
of state n.
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Single-Station Queues I M/M/1 Queue

0 1 2 · · · n− 1 n n+ 1 · · ·
λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Key Observation 2

Rate at which the process leaves state 0 = P0λ;
Rate at which the process leaves state n = Pn(µ+λ), n ≥ 1;
Rate at which the process enters state 0 = P1µ;
Rate at which the process enters state n = Pn−1λ+Pn+1µ,
n ≥ 1.

Fact

If X1, . . . ,Xn are independent random variables, and Xi ∼
Exp(λi), i = 1, . . . ,n, then

min{X1, . . . ,Xn} ∼ Exp(λ1 + · · ·+ λn).
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Single-Station Queues I M/M/1 Queue

Theorem 4 (Limiting Distribution of M/M/1 Queue)

For an M/M/1 queue, when it is stable (λ < µ), its limiting
(steady-state) distribution is given by

Pn = (1− ρ)ρn, n ≥ 0,

where ρ := λ/µ < 1. (ρ is called the server utilization.)

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 P0λ = P1µ

n, n ≥ 1 Pn(µ+ λ) = Pn−1λ+ Pn+1µ

Rewriting these equations gives

P0λ = P1µ,

Pnλ = Pn+1µ+ (Pn−1λ− Pnµ), n ≥ 1.
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Single-Station Queues I M/M/1 Queue

Recall that

P0λ = P1µ,

Pnλ = Pn+1µ+ (Pn−1λ− Pnµ), n ≥ 1.

Or, equivalently,

P0λ = P1µ,

P1λ = P2µ+ (P0λ− P1µ) = P2µ,

P2λ = P3µ+ (P1λ− P2µ) = P3µ,

Pnλ = Pn+1µ+ (Pn−1λ− Pnµ) = Pn+1µ, n ≥ 1.

Let ρ := λ/µ (< 1), solving in terms of P0 yields

P1 = P0ρ,

P2 = P1ρ = P0ρ
2,

Pn = Pn−1ρ = P0ρ
n, n ≥ 1.

Since 1 = Σ∞n=0Pn = P0Σ∞n=0ρ
n = P0/(1− ρ), we have

P0 = 1− ρ, and Pn = (1− ρ)ρn, n ≥ 1. �
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Single-Station Queues I M/M/1 Queue

• L =
∑∞

n=0 nPn =
∑∞

n=0 n(1− ρ)ρn = ρ
1−ρ .

• Using Little’s Law, W = L/λ = 1
λ

ρ
1−ρ = 1

µ−λ .

• LQ =
∑∞

n=1(n− 1)Pn =
∑∞

n=1(n− 1)(1− ρ)ρn = ρ2

1−ρ .

• Using Little’s Law, WQ = LQ/λ = 1
λ
ρ2

1−ρ = 1
µ

ρ
1−ρ = ρ

µ−λ .

• Or, WQ = W − E[service time] = 1
µ−λ −

1
µ = λ

µ(µ−λ) = ρ
µ−λ .

• Using Little’s Law, LQ = λWQ = λ ρ
µ−λ = ρ2

1−ρ .

• Due to unlimited capacity, arrival rate = entering rate, so the
time average (W , WQ) is based on all customers.

• P(the server is idle) = P0 = 1− ρ.

• As ρ→ 1, all L, W , LQ and WQ tend to ∞.
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Single-Station Queues I M/M/s Queue

• M/M/s Queue†

• Customers arrive according to a Poisson process with rate λ.
• The service times are iid random variables with Exp(µ)

distribution.
• There are s parallel servers.
• The customers form a single queue and get served by the next

available server in an FCFS fashion.
• The capacity is unlimited, i.e., waiting space is unlimited.
• M/M/s queue is stable if and only if λ < sµ.
• Due to unlimited capacity, arrival rate = entering rate.

• M/M/s queue is a generalized version of M/M/1 queue. Let
s = 1, all results should degenerate to those of M/M/1.

†
M/M/1 Queue ⊂ M/M/s Queue ⊂ Birth and Death Process with Infinite Capacity ⊂ CTMC.
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Single-Station Queues I M/M/s Queue

• The state space diagram is as follows:

0 1 2 · · · s− 1 s s+ 1 · · ·
λ

µ

λ

2µ

λ

3µ

λ

(s− 1)µ

λ

sµ

λ

sµ

λ

sµ

Theorem 5 (Limiting Distribution of M/M/s Queue)

For an M/M/s queue, when it is stable (λ < sµ), its limiting
(steady-state) distribution is given by

Pn =

[
s∑
i=0

1

i!

(
λ

µ

)i
+
ss

s!

ρs+1

1− ρ

]−1
ρn , n ≥ 0,

where the server utilization ρ := λ/(sµ) < 1, and

ρn :=

{
1
n!

(
λ
µ

)n
, if 0 ≤ n ≤ s,

ss

s! ρ
n, if n ≥ s+ 1.
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Single-Station Queues I M/M/s Queue

• LQ =
∑∞

n=s(n− s)Pn =
∑∞

n=s(n− s)P0ρn =
∑∞

k=0 kP0ρs+k

=
∑∞

k=1 kP0ρsρ
k =

∑∞
k=1 kPsρ

k = Psρ
(1−ρ)2 .

• Using Little’s Law, WQ = LQ/λ = 1
λ

Psρ
(1−ρ)2 = Ps

sµ(1−ρ)2 .

• W = WQ + E[service time] = Ps
sµ(1−ρ)2 + 1

µ .

• Using Little’s Law,
L = λW = λ(WQ + 1

µ) = LQ + λ
µ = Psρ

(1−ρ)2 + λ
µ .

• Due to unlimited capacity, arrival rate = entering rate, so the
time average (W , WQ) is based on all customers.

• As ρ→ 1, all L, W , LQ and WQ tend to ∞.
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Single-Station Queues I M/M/∞ Queue

• By letting s→∞ we get the M/M/∞ queue as a limiting
case of the M/M/s queue.

• Note: M/M/∞ queue is always stable! (The server
utilization is always 0.)

• All the measures can be obtained by letting s→∞ for those
in the case of M/M/s queue.†

• Or, one can still derive Pn via the state space diagram:

0 1 2 · · · n− 1 n n+ 1 · · ·
λ

µ

λ

2µ

λ

3µ

λ

(n− 1)µ

λ

nµ

λ

(n+ 1)µ

λ

(n+ 2)µ

†
Use the Taylor expansion (泰勒展开): ex =

∑∞
n=0

xn

n!
,x ∈ R.
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Single-Station Queues I M/M/∞ Queue

Theorem 6 (Limiting Distribution of M/M/∞ Queue)

For an M/M/∞ queue, its limiting (steady-state) distribu-
tion is given by

Pn = e−λ/µ
(λ/µ)n

n!
, n ≥ 0.

• In steady state, the number of customers in an M/M/∞
station ∼ Poisson(λ/µ).

• Hence, L =
∑∞

n=0 nPn = E
[
Poisson RV with mean λ

µ

]
= λ

µ .

• Using Little’s Law, W = L/λ = 1
µ .

• LQ = 0, WQ = 0.
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Single-Station Queues I M/M/1/K Queue

• M/M/1/K Queue†

• Customers arrive according to a Poisson process with rate λ.
• The service times are iid random variables with Exp(µ)

distribution.
• The customers are served in an FCFS fashion by a single server.
• The capacity is K, K ≥ 1, i.e., the maximal number of

customers waiting in queue + customers in server ≤ K.
• A customer who finds the station is full (K customers there)

leaves immediately (lost).
• The entering rate, denoted as λe, is smaller than the arrival

rate λ.
• It is always stable (due to the finite capacity).

• In steady state
• P(station is full) = PK .
• Entering rate λe = λ(1− PK).

†
M/M/1/K Queue ⊂ Birth and Death Process with Finite Capacity ⊂ Continuous-Time Markov Chain.
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Single-Station Queues I M/M/1/K Queue

• The state space diagram is as follows:

0 1 · · · n− 1 n n+ 1 · · · K

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Theorem 7 (Limiting Distribution of M/M/1/K Queue)

For an M/M/1/K queue, its limiting (steady-state) distri-
bution is given by

Pn =

{
(1−ρ)ρn
1−ρK+1 , if ρ 6= 1,
1

K+1 , if ρ = 1,
0 ≤ n ≤ K,

where ρ := λ/µ. (ρ is NOT the server utilization!)
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Single-Station Queues I M/M/1/K Queue

0 1 · · · n− 1 n n+ 1 · · · K

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 P0λ = P1µ

n, 1 ≤ n ≤ K − 1 Pn(µ+ λ) = Pn−1λ+ Pn+1µ
K PKµ = PK−1λ

Rewriting these equations gives

P0λ = P1µ,

Pnλ = Pn+1µ+ (Pn−1λ− Pnµ), 1 ≤ n ≤ K − 1,

PKµ = PK−1λ.
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Single-Station Queues I M/M/1/K Queue

Or, equivalently,

P0λ = P1µ,

P1λ = P2µ+ (P0λ− P1µ) = P2µ,

P2λ = P3µ+ (P1λ− P2µ) = P3µ,

Pnλ = Pn+1µ+ (Pn−1λ− Pnµ) = Pn+1µ, 1 ≤ n ≤ K − 2,

PK−1λ = PKµ.

Let ρ := λ/µ, solving in terms of P0 yields

P1 = P0ρ,

P2 = P1ρ = P0ρ
2,

Pn = Pn−1ρ = P0ρ
n, 1 ≤ n ≤ K.

Since 1 = ΣKn=0Pn = P0ΣKn=0ρ
n =

{
P0

1−ρK+1

1−ρ , if ρ 6= 1,

P0(K + 1), if ρ = 1,
we have,

if ρ 6= 1, P0 = 1−ρ
1−ρK+1 , and Pn = (1−ρ)ρn

1−ρK+1 , 1 ≤ n ≤ K;

if ρ = 1, P0 = 1
K+1 , and Pn = 1

K+1 , 1 ≤ n ≤ K. �
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Single-Station Queues I M/M/1/K Queue

• If ρ 6= 1,

L =
∑K

n=0 nPn =
∑K

n=0 n
(1−ρ)ρn
1−ρK+1 = 1−ρ

1−ρK+1

∑K
n=0 nρ

n

= 1−ρ
1−ρK+1

ρ−(K+1)ρK+1+KρK+2

(1−ρ)2 = ρ
1−ρ

1−(K+1)ρK+KρK+1

1−ρK+1 .

• If ρ = 1,

L =
∑K

n=0 nPn =
∑K

n=0 n
1

K+1 = 1
K+1

(K+1)K
2 = K

2 .

• P(station is full) = PK .

• Entering rate λe = λ(1− PK).

• The server utilization = λe/µ = ρ(1− PK).

• As ρ→∞, L→ K, 1− PK → 0, ρ(1− PK)→ 1.
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Single-Station Queues I M/M/1/K Queue

• For those entered the station
• The expected sojourn time W = L/λe = L

λ(1−PK) .

• The expected waiting time WQ = W − 1
µ = L

λ(1−PK) −
1
µ .

• For ALL the arrivals (those who are lost have 0 sojourn time
and waiting time)
• The expected sojourn time W ′ = (1− PK)W + 0 = L

λ .

• The expected waiting time W ′Q = (1− PK)WQ + 0 = L
λ −

1−PK

µ .

• The expected queue length LQ = λeWQ = L− ρ(1− PK),
or, = λW ′Q = L− ρ(1− PK).

• As ρ→∞, 1− PK → 0, ρ(1− PK)→ 1, L→ K, LQ → K − 1.

• If µ is fixed and λ→∞:
λ(1− PK)→ µ, W → K

µ , WQ → K−1
µ , W ′ → 0, W ′Q → 0.

• If λ is fixed and µ→ 0:
1
µ (1−PK)→ 1

λ , W →∞, WQ →∞, W ′ → K
λ , W ′Q → K−1

λ .
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Single-Station Queues I M/M/s/K Queue

• M/M/s/K queue† is a generalized version of M/M/1/K
queue. (K ≥ s)

• The state space diagram is as follows:

0 1 · · · s− 1 s s+ 1 · · · K

λ

µ

λ

2µ

λ

(s− 1)µ

λ

sµ

λ

sµ

λ

sµ

λ

sµ

• Let s = 1, it becomes the M/M/1/K queue.

• Let s = K, it becomes the M/M/K/K queue.

• There is no M/M/∞/K queue!

†
M/M/1/K Queue ⊂ M/M/s/K Queue ⊂ Birth and Death Process with Finite Capacity ⊂ CTMC.
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Single-Station Queues I M/M/s/K Queue

Theorem 8 (Limiting Distribution of M/M/s/K Queue)

For an M/M/s/K queue, its limiting (steady-state) distri-
bution is given by

Pn =

[
s∑
i=0

1

i!

(
λ

µ

)i
+ %

]−1
ρn , 0 ≤ n ≤ K,

where ρ := λ/(sµ), (ρ is NOT the server utilization!) and

% :=


ss

s!
ρs+1(1−ρK−s)

1−ρ , if ρ 6= 1,

ss

s! (K − s), if ρ = 1,

ρn :=

{
1
n!

(
λ
µ

)n
, if 0 ≤ n ≤ s,

ss

s! ρ
n, if s+ 1 ≤ n ≤ K, K ≥ s+ 1.

• The server utilization = λe/(sµ) = ρ(1− PK).
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Single-Station Queues I M/G/1 Queue

• M/G/1 Queue†

• Customers arrive according to a Poisson process with rate λ.
• The service times are iid random variables with arbitrary

distribution (mean: 1
µ , variance: σ2).

• The customers are served in an FCFS fashion by a single server.
• The capacity is unlimited, i.e., waiting space is unlimited.
• M/G/1 queue is stable if and only if λ < µ.

• Let m2 :=
(
1
µ

)2
+σ2, and the server utilization ρ := λ/µ < 1.

• P(the server is idle) = 1− ρ.

• WQ = λm2

2(1−ρ) .

• LQ = λWQ = λ2m2

2(1−ρ) .

• W = WQ + 1
µ = λm2

2(1−ρ) + 1
µ .

• L = λW = LQ + λ/µ = λ2m2

2(1−ρ) + ρ.

• For M/G/∞, the measures are the same as those in M/M/∞.
†
M/G/1 queue has an embedded discrete-time Markov chain.
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Queueing Networks

• Queueing Network (multiple-station queueing system)
• Customers can move from one station to another (for different

service), before leaving the system.

Station 1

Station 2

Station 3

Figure: Illustration of Queueing Networks
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Queueing Networks I Jackson Networks

• Jackson Queueing Network (first identified by Jackson (1963) )†

1 The network has J single-station queues.
2 The jth station has sj servers and a single queue.
3 There is unlimited waiting space at each station (infinite

capacity).
4 Customers arrive at station j from outside according to a

Poisson process with rate λj ; all arrival processes are
independent of each other.

5 The service times at station j are iid random variables with
Exp(µj) distribution.

6 Customers finishing service at station i join the queue (if any)
at station j with routing probability pij , or leave the network
with probability pi0, independently of each other.

7 A customer finishing service may be routed to the same station
(i.e., re-enter).

†
Jackson network is an J-dimensional continuous-time Markov chain.
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Queueing Networks I Jackson Networks

• The routing probabilities pij can be put in a matrix form as
follows:

P :=


p11 p12 p13 · · · p1J
p21 p22 p23 · · · p2J
p31 p32 p33 · · · p3J

...
...

...
. . .

...
pJ1 pJ2 pJ3 · · · pJJ

 .

• The matrix P is called the routing matrix.

• Since a customer leaving station i either joints some other
station, or leaves, we must have

J∑
j=1

pij + pi0 = 1, 1 ≤ i ≤ J .
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Queueing Networks I Jackson Networks

• Example 1: Tandem Queue

Station 1

𝑠1 = 2
𝜇1 = 6

Station 2

𝑠2 = 3
𝜇2 = 4

Station 3

𝑠3 = 1
𝜇3 = 12

𝜆1 = 10
𝑝12 = 1 𝑝23 = 1

𝑝30 = 1

P =

[
0 1 0
0 0 1
0 0 0

]
.

• Example 2: General Network

Station 1

𝑠1 = 2
𝜇1 = 6

Station 2

𝑠2 = 3
𝜇2 = 4

Station 3

𝑠3 = 1
𝜇3 = 12

𝜆1 = 8

𝜆2 = 1

𝜆3 = 3

0.6

0.2
0.4 0.5

0.2

0.6

0.4

0.1
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Queueing Networks I Jackson Networks

• Recall that customers arrive at station j from outside with
rate λj .

• Let bj be the rate of internal arrivals to station j.

• Then the total arrival rate to station j, denoted as aj , is given
by

aj = λj + bj , 1 ≤ j ≤ J .

• If the stations are all stable
• The departure rate of customers from station i will be the

same as the total arrival rate to station i, namely, ai.
• The arrival rate of internal customers from station i to station
j is aipij .

• Hence, bj =
∑J

i=1 aipij , 1 ≤ j ≤ J .

• Substituting in the pervious equation, we get the traffic
equations:

aj = λj +
∑J

i=1 aipij , 1 ≤ j ≤ J .
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Queueing Networks I Stability

• Let a
ᵀ

= [a1 a2 · · · aJ ] and λ
ᵀ

= [λ1 λ2 · · · λJ ], the traffic
equations can be written in matrix form as

a
ᵀ

= λ
ᵀ

+ a
ᵀ
P ,

or
a
ᵀ
(I − P ) = λ

ᵀ
,

where I is the J × J identity matrix.

• Suppose the matrix I − P is invertible, the above equation
has a unique solution given by

a
ᵀ

= λ
ᵀ
(I − P )−1.

• The next theorem states the stability condition for Jackson
networks in terms of the above solution.
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Queueing Networks I Stability

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector λ and
routing matrix P is stable if:
(1) I − P is invertible; and
(2) ai < siµi for all i = 1, 2, . . . , J , where ai is given by the
traffic equations.

• Example 1: Tandem Queue

Station 1

𝑠1 = 2
𝜇1 = 6

Station 2

𝑠2 = 3
𝜇2 = 4

Station 3

𝑠3 = 1
𝜇3 = 12

𝜆1 = 10
𝑝12 = 1 𝑝23 = 1

𝑝30 = 1

P =

[
0 1 0
0 0 1
0 0 0

]
. λ =

[
10
0
0

]
, a

ᵀ
= λ

ᵀ
(I − P )−1 = [10 10 10].

Stable.
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Queueing Networks I Examples

• Example 2: General Network

Station 1

𝑠1 = 2
𝜇1 = 6

Station 2

𝑠2 = 3
𝜇2 = 4

Station 3

𝑠3 = 1
𝜇3 = 12

𝜆1 = 8

𝜆2 = 1

𝜆3 = 3

0.6

0.2
0.4 0.5

0.2

0.6

0.4

0.1

λ =

[
8
1
3

]
, a

ᵀ
= λ

ᵀ
(I − P )−1 = [8 10.7 9.9]⇒ Stable.

If λ2 is increased to 4,

λ =

[
8
4
3

]
, a

ᵀ
= λ

ᵀ
(I − P )−1 = [8 14.6 11.6]⇒ Unstable.
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Queueing Networks I Limiting Behavior

• Let Lj(t) be the number of customers in the jth station in a
Jackson network at time t.

• Then the state of the network at time t is given by
[L1(t),L2(t), . . . ,LJ(t)].

• When the Jackson network is stable, the limiting distribution
of the sate of the network is

P (n1,n2, . . . ,nJ)

= lim
t→∞

P{L1(t) = n1,L2(t) = n2, . . . ,LJ(t) = nJ}.

• It is a joint probability.
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Queueing Networks I Limiting Behavior

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) dis-
tribution is given by

P (n1,n2, . . . ,nJ) = P1(n1)P2(n2) · · ·PJ(nJ),

for nj = 0, 1, 2, . . . and j = 1, 2, . . . , J , where Pj(n) is the
limiting probability that there are n customers in an M/M/sj
queue with arrival rate aj and service rate µj .

• The limiting joint distribution of [L1(t), . . . ,LJ(t)] is a product of
the limiting marginal distribution of Lj(t), j = 1, . . . , J .
⇒ Limiting behavior of all stations are independent of each other.

• The limiting distribution of station j is the same as that in an
isolated M/M/sj queue with arrival rate aj and service rate µj .
(aj ’s are solved from the traffic equations.)
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