MEM6810 Engineering Systems Modeling and Simulation ^工程系统建模与仿^真

Theory Analysis

Lecture 3: Queueing Models

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

 shenhaihui.github.io/teaching/mem6810f \blacktriangleright shenhaihui@sjtu.edu.cn

Spring 2023 (full-time)

[董浩云智能制造与服务管理研究院](http://www.sugli.sjtu.edu.cn/)
CYTUNG Institute of Intelligent Manufacturing and Service Management

中美物流研究院 (中美物流研究院) Sino-US Global Logistics Institute

(Sino-US Global Logistics Institute)

Contents

- **1** [Queueing Systems and Models](#page-2-0)
	- \blacktriangleright [Introduction](#page-3-0)
	- ▶ [Characteristics & Terminology](#page-16-0)
	- [Kendall Notation](#page-21-0)
- **2** [Poisson Process](#page-22-0)
	- \blacktriangleright [Definition](#page-23-0)
	- \blacktriangleright [Properties](#page-26-0)
- **3** [Single-Station Queues](#page-30-0)
	- \blacktriangleright [Notations](#page-31-0)
	- \blacktriangleright [General Results](#page-36-0)
	- \blacktriangleright [Little's Law](#page-39-0)
	- \blacktriangleright $M/M/1$ $M/M/1$ Queue
	- \blacktriangleright $M/M/s$ Queue
	- \blacktriangleright $M/M/\infty$ $M/M/\infty$ Queue
	- \blacktriangleright $M/M/1/K$ $M/M/1/K$ Queue
	- \blacktriangleright $M/M/s/K$ Queue
	- $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ Queue
- 4 [Queueing Networks](#page-64-0)
	- \blacktriangleright [Jackson Networks](#page-66-0)

1 [Queueing Systems and Models](#page-2-0)

- \blacktriangleright [Introduction](#page-3-0)
- ▶ [Characteristics & Terminology](#page-16-0)
- [Kendall Notation](#page-21-0)

[Poisson Process](#page-22-0)

- \blacktriangleright [Definition](#page-23-0)
- \blacktriangleright [Properties](#page-26-0)

[Single-Station Queues](#page-30-0)

- \blacktriangleright [Notations](#page-31-0)
- [General Results](#page-36-0)
- \blacktriangleright [Little's Law](#page-39-0)
- $\blacktriangleright M/M/1$ $\blacktriangleright M/M/1$ $\blacktriangleright M/M/1$ Queue
- $\blacktriangleright M/M/s$ $\blacktriangleright M/M/s$ Queue
- $\blacktriangleright M/M/\infty$ $\blacktriangleright M/M/\infty$ $\blacktriangleright M/M/\infty$ Queue
- $\blacktriangleright M/M/1/K$ $\blacktriangleright M/M/1/K$ $\blacktriangleright M/M/1/K$ Queue
- $\blacktriangleright M/M/s/K$ $\blacktriangleright M/M/s/K$ Queue
- $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ Queue

[Queueing Networks](#page-64-0)

I [Jackson Networks](#page-66-0)

- • Queues (or waiting lines) are EVERYWHERE!
- Queues are an unavoidable component of modern life.
	- E.g., in hospital, stores, bank, call center (online service), etc.
	- Although we don't like standing in a queue, we appreciate the fairness that it imposes.
- Queues are not just for humans, however.
	- E.g., email system, printer, manufacturing line, etc.
	- Manufacturing systems maintain queues (called inventories) of raw materials, partly finished goods, and finished goods via the manufacturing process.

Figure: Queues in Hospital

CC BY-SA

Figure: Queues in Store (from [The Sun](https://www.thesun.co.uk/living/2844881/skip-starbucks-queue/))

CO BY-SA

Figure: Queues in Campus (for COVID-19 Nucleic Acid Test)

Figure: Queues in Bank

CC BY-SA

Figure: Queues in Bank (No requirement to stand physically in queues)

Figure: Queue in Online Service

CC BY-SA

Figure: Queue in Mail Server (from [OASIS](https://www.oasis-open.org/khelp/kmlm/user_help/html/how_email_works.html))

Figure: Queue in Printer

Figure: Queues (Inventories) in Manufacturing Line (from [[Estes](https://www.estesdm.com/services/inventory-management/))

- Typically, a queueing system consists of a stream of "customers" (humans, goods, messages) that
	- arrive at a service facility;
	- wait in the **queue** according to certain discipline;
	- get served;
	- finally depart.
- A lot of real-world systems can be viewed as queueing systems, e.g.,
	- service facilities
	- production systems
	- repair and maintenance facilities
	- communications and computer systems
	- transport and material-handling systems, etc.
- Queueing models are mathematical representation of queueing systems.

- Queueing models may be
	- analytically solved using queueing theory when they are simple (highly simplified); or
	- analyzed through simulation when they are complex (more realistic).
- Studied in either way, queueing models provide us a powerful tool for designing and evaluat[in](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)g the performance of queueing systems.
- They help us do this by answering the following questions (and many others):
	- 1 How many customers are there in the queue (or station) on average?
	- 2 How long does a typical customer spend in the queue (or station) on average?
	- **3** How busy are the servers on average?

ヒ海ミイ

- Simple queueing models solved analytically:
	- Get rough estimates of system performance with negligible time and expense.
	- More importantly, understand the dynamic behavior of the queueing systems and the relationships between various performance measures.
	- Provide a way to verify that the simulation model has been programmed correctly.
- Complex queueing models analyzed through simulation:
	- Allow us to incorporate arbitrarily fine details of the system into the model.
	- Estimate virtually any performance measure of interest with high accuracy.
- This lecture focuses on the classical analytically solvable queueing models. 上海文前

Queueing Systems and Models \rightarrow Characteristics & Terminology

- The key elements of a queueing system are the customers and servers.
	- The term customer can refer to anything that arrives and requires service.
	- The term server can refer to any resource that provides the requested service.
- The term station means the [en](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)tire or part of the system, which contains all the identical servers and the queue.
- Suppose that there is only **one queue** in one station.
- **Capacity** is the maximal number of customers allowed in the station.
	- Number waiting in queue $+$ number having service.
	- Finite or infinite.

Queueing Systems and Models \rightarrow Characteristics & Terminology

- Single-station queueing system.
	- Customers simply leave after service.
	- E.g., customers arrive to buy coffee and then leave.
- Multiple-station queueing system (queueing network).
	- Customers can move from one station to another (for different service), before leaving the system.
	- E.g., patients wait and get service at several different units inside a hospital.

Queueing Systems and Models \rightarrow Characteristics & Terminology

- The arrival process describes how the customers come.
	- Arrivals may occur at *scheduled* times or *random* times.
	- When at random times, the interarrival times are usually characterized by a probability distribution.
	- Customers may arrive one at a time or in batch (with constant or random batch size).
	- Different types of customers.
- An customer arriving at a station:
	- if the station capacity is full:
		- the external arrival will leave immediately (called lost);
		- the internal arrival may wait in the previous station (may block the previous server).
	- if the station capacity is not full, enter the station:
		- if there is idle server in the station, get service immediately;
		- if all servers are busy, wait in the queue.

- Queue discipline: Which customer to serve first.
	- First-in-first-out (FIFO), or first-come-first-served (FCFS).
	- Last-in-first-out (LIFO), or last-come-first-served (LCFS).
	- Shortest processing time first.
	- Service according to priority (more than one customer types).
- Queue behavior: Actions of customers while waiting.
	- Balk: leave when they see that the line is too long.
	- Renege: leave after being in the line when they see that the line is moving too slowly.
- **Service time** is the duration of service in a server.
	- *Constant or random* duration.
	- May depend on the customer type.
	- May depend on the time of day or the queue length.

- When without specification, the queueing models considered in this lecture shall satisfy the following:
	- **1** One customer type.
	- 2 Random arrivals (i.e., random interarrival times, iid.).
	- \bullet No batch (or say, batch size is 1).[†]
	- **4** One queue in one station.
	- **6** First-come-first-served (FC[FS](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)).
	- **6** No balk, no renege.
	- **7** Random service time (depends on nothing else), iid.
- Even so, it is not that easy to analyze the queueing models!

 \dagger_{1+2+3} \Rightarrow The arrival process is a *renewal process*.

- • Canonical notational system proposed by [Kendall \(1953\):](https://www.jstor.org/stable/2236285) $X/Y/s/K$.
	- X represents the interarrival-time distribution.
		- $-M:$ Memoryless, i.e., exponential interarrival times;
		- $-G:$ General:
		- D: Deterministic.
	- Y represents the service-time distribution.
		- Same letters as the inte[ra](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)rrival times.
	- s represents the number of parallel servers.
		- Finite value.
		- For infinite number of servers, s is replaced by ∞ .
	- K represents the station capacity.
		- Finite value.
		- For infinite capacity, K is replaced by ∞ , or simply omitted.
- Examples: $M/M/1$, $M/G/1$, $M/M/s/K$.

上海交通大学

[Queueing Systems and Models](#page-2-0) \blacktriangleright [Introduction](#page-3-0) ▶ [Characteristics & Terminology](#page-16-0) [Kendall Notation](#page-21-0)

2 [Poisson Process](#page-22-0)

- \blacktriangleright [Definition](#page-23-0)
- \blacktriangleright [Properties](#page-26-0)
- **[Single-Station Queues](#page-30-0)**
	- \blacktriangleright [Notations](#page-31-0)
	- [General Results](#page-36-0)
	- \blacktriangleright [Little's Law](#page-39-0)
	- $\blacktriangleright M/M/1$ $\blacktriangleright M/M/1$ $\blacktriangleright M/M/1$ Queue
	- $\blacktriangleright M/M/s$ $\blacktriangleright M/M/s$ Queue
	- \blacktriangleright $M/M/\infty$ $M/M/\infty$ Queue
	- $\blacktriangleright M/M/1/K$ $\blacktriangleright M/M/1/K$ $\blacktriangleright M/M/1/K$ Queue
	- $\blacktriangleright M/M/s/K$ $\blacktriangleright M/M/s/K$ Queue
	- $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ Queue
- [Queueing Networks](#page-64-0)
	- **I** [Jackson Networks](#page-66-0)

Poisson Process **Internation I** Definition

• A stochastic process $\{N(t), t \geq 0\}$ is said to be a *counting* process if $N(t)$ represents the total number of arrivals that have occurred up to time t .

- Let $\{X_n, n \geq 1\}$ denote the *interarrival times*:
	- X_1 denotes the time of the first arrival;
	- For $n \geq 2$, X_n denotes the time between the $(n-1)$ st and the nth arrivals.

Poisson Process **Internation I** Definition

- Definition 1. The counting process $\{N(t), t \geq 0\}$ is called a **Poisson process** with rate λ , $\lambda > 0$, if:
	- $N(0) = 0$;
	- The process has **independent** and **stationary** increments;
	- For $t > 0$, $N(t) \sim \text{Pois}(\lambda t)$, i.e.,

$$
\mathbb{P}(N(t)=n)=e^{-\lambda t}\frac{(\lambda t)^n}{n!},\ \ n=0,1,2,\ldots.
$$

- Independent Increments: The numbers of arrivals in disjoint time intervals are independent.
- Stationary Increments: The distribution of number of arrivals in any time interval depends only on the length of time interval, i.e., for $s < t$, the distribution of $N(t) - N(s)$ depends only on $t - s$.

Poisson process [⊂] renewal process [⊂] counting process.

上海交通大學

- Definition 2. The counting process $\{N(t), t \geq 0\}$ is called a **Poisson process** with rate λ , $\lambda > 0$, if:
	- $N(0) = 0$;
	- The process has independent and stationary increments;
	- $\mathbb{P}(N(t) = 1) = \lambda t + o(t);$
	- $\mathbb{P}(N(t) > 2) = o(t)$.
- Definition 3. The counting p[ro](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)cess $\{N(t), t \geq 0\}$ is called a **Poisson process** with rate λ , $\lambda > 0$, if:
	- $N(0) = 0$;
	- $\{X_n, n \geq 1\}$ is a sequence of iid random variables, and $X_n \sim \text{Exp}(\lambda)$.
- Definition 1, Definition 2 and Definition 3 are equivalent.

Poisson Process and Properties

Question 1: When will the next appear?

• The Poisson process has no memory! (equivalent to the independent and stationary increments assumption) (A) 上海交通大學

- Let $S_n = X_1 + X_2 + \cdots + X_n$ be the arrival time of the nth arrival.
- **Question 2:** If I only know there are n arrivals up to time t, what can I say about the *n* arrival times S_1, \ldots, S_n ?
- A simplified case:

- Intuition:
	- Since Poisson process possesses independent and stationary increments, each interval of equal length in $[0, t]$ should have the same probability of containing the arrival.
	- Hence, the arrival time should be uniformly distributed on $[0, t]$.

Poisson Process and Properties

Proof.

$$
\mathbb{P}\{X_1 < s | N(t) = 1\} = \frac{\mathbb{P}\{X_1 < s, N(t) = 1\}}{\mathbb{P}\{N(t) = 1\}} \\
= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s), 0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \\
= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s)\} \mathbb{P}\{0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \\
= \frac{\mathbb{P}\{N(s) = 1\} \mathbb{P}\{N(t - s) = 0\}}{\mathbb{P}\{N(t) = 1\}} \\
= \frac{e^{-\lambda s} \lambda s e^{-\lambda(t - s)}}{e^{-\lambda t} \lambda t} \\
= \frac{s}{t}.
$$

• Remark: This result can be generalized to n arrivals.

Property (Conditional Distribution of Arrival Times)

Given that $N(t) = n$, the *n* arrival times S_1, \ldots, S_n have the same distribution as the order statistics corresponding to n independent RVs uniformly distributed on the interval $(0, t)$.

• Illustration:

• This is very nice for simulation!

[Queueing Systems and Models](#page-2-0) \blacktriangleright [Introduction](#page-3-0) ▶ [Characteristics & Terminology](#page-16-0) [Kendall Notation](#page-21-0) 2 [Poisson Process](#page-22-0) \blacktriangleright [Definition](#page-23-0) \blacktriangleright [Properties](#page-26-0) **3** [Single-Station Queues](#page-30-0) \blacktriangleright [Notations](#page-31-0) \blacktriangleright [General Results](#page-36-0) \blacktriangleright [Little's Law](#page-39-0) \blacktriangleright $M/M/1$ $M/M/1$ Queue \blacktriangleright $M/M/s$ Queue \blacktriangleright $M/M/\infty$ $M/M/\infty$ Queue \blacktriangleright $M/M/1/K$ $M/M/1/K$ Queue \blacktriangleright $M/M/s/K$ Queue $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ Queue [Queueing Networks](#page-64-0) **I** [Jackson Networks](#page-66-0)

Single-Station Queues **International Accord Point Contract Oriental** Motations

• Let $L(t)$ denote the number of customers in the station at time t.

ト海さる

• Another expression of $\widehat{L}(T)$: Let T_n denote the total time during $[0, T]$ in which the station contains exactly n customers.

- Suppose during time $[0, T]$, totally $N(T)$ customers have entered the station, and let $W_1, W_2, \ldots, W_{N(T)}$ denote the time each customer spends in the station up to time $T.^{\dagger}$
- Let $\widetilde{W}(T)$ denote the average sojourn time (逗留时间) in the station up to time T :

$$
\widehat{W}(T) := \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i.
$$

- In a similar way, we can also define
	- $\hat{L}_O(T)$ The average number of customers in the *queue* up to time T.
	- $\widehat{W}_Q(T)$ The average waiting time in the queue up to time T.

 † The time includes both the waiting time in queue and the time in server. The part after T is not counted

上海文百大學

- Now we consider the long-run measures.
	- L The long-run average number of customers in the station:

$$
L \coloneqq \lim_{T \to \infty} \widehat{L}(T).
$$

• W – The long-run average sojourn time in the station:

$$
W\coloneqq\lim_{T\to\infty}\widehat{W}(T).
$$

• L_O – The long-run average [n](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)umber of customers in the queue:

$$
L_Q := \lim_{T \to \infty} \widehat{L}_Q(T).
$$

• W_Q – The long-run average waiting time in the queue:

$$
W_Q \coloneqq \lim_{T \to \infty} \widehat{W}_Q(T).
$$

• Question: When will L, W, L_Q and W_Q exist (and $< \infty$)?

上海交通大学

• We also define the *limiting probability* that there will be exactly n customers in the station as time goes to infinity:

$$
P_n := \lim_{t \to \infty} \mathbb{P}{L(t) = n}, \quad n = 0, 1, 2,
$$

- Question: When will P_n exist?
- Moreover, for an arbitrary $X/Y/s/K$ $X/Y/s/K$ $X/Y/s/K$ queue
	- Let λ denote the arrival rate, i.e.,

$$
\mathbb{E}[\text{interarrival time}] = \frac{1}{\lambda}.
$$

• Let μ denote the service rate in one server, i.e.,

$$
\mathbb{E}[\text{service time}] = \frac{1}{\mu}.
$$
- • Question: When will L, W, L_Q , W_Q and P_n exist?
- Answer: When the queue is stable.[†]
- Question: When will the queue be stable?!

Theorem 1 (Condition of Stabil[it](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)y)

For an $X/Y/s/\infty$ queue (i.e., infinite capacity) with arrival rate λ and service rate μ , it is stable if

 $\lambda < su$.

And, an $X/Y/s/K$ queue (i.e., finite capacity) will always be stable.

 T That is to say, the underlying Markov chain is positive recurrent.</sup>

上海交通大学

Single-Station Queues **Internal Results** General Results

- Recall that $P_n := \lim_{t \to \infty} \mathbb{P}{L(t) = n}$, $n = 0, 1, 2, \ldots$.
- P_n is also called the probability that there are exactly n customers in the station when it is in the steady state.
	- Since the system is stable and run for infinitely long time, it should enters some steady state (i.e., has nothing to do with the initial state).
- \bullet L can also be written as $L \coloneqq \sum_{n=0}^\infty n P_n$ $L \coloneqq \sum_{n=0}^\infty n P_n$ $L \coloneqq \sum_{n=0}^\infty n P_n$ (see next slide).
	- L is also called the expected number of customers in the station in steady state;
	- W is also called the expected sojourn time in the station in steady state;
	- L_Q is also called the expected number of customers in the queue in steady state;
	- W_Q is also called the expected waiting time in the queue in steady state. 上海文百大學

Single-Station Queues **Internal Results** General Results

- Recall that $P_n := \lim_{t \to \infty} \mathbb{P}{L(t) = n}$, $n = 0, 1, 2, \ldots$.
- It turns out that, when the queue is stable, P_n also equals the long-run proportion of time that the station contains exactly n customers,[†] i.e., with probability 1, for all n ,

amount of time during $[0,T]$ that station contains n customers $P_n = \lim_{T \to \infty}$. T $\frac{1}{T} \int_0^T L(t) \mathrm{d}t = \sum_{n=0}^{\infty} n\left(\frac{T_n}{T}\right)$ $\frac{1}{T} \int_0^T L(t) \mathrm{d}t = \sum_{n=0}^{\infty} n\left(\frac{T_n}{T}\right)$ $\frac{1}{T} \int_0^T L(t) \mathrm{d}t = \sum_{n=0}^{\infty} n\left(\frac{T_n}{T}\right)$, then • Recall $\widehat{L}(T) \coloneqq \frac{1}{T}$ $\sum_{n=1}^{\infty} n \left(\frac{T_n}{T_n} \right)$ \setminus $L \coloneqq \lim_{T \to \infty} L(T) = \lim_{T \to \infty}$ \mathcal{I} $n=0$ $=\sum_{n=1}^{\infty}\lim_{T\to\infty}n\left(\frac{T_n}{T}\right)$ \log DCT) \overline{I} $n=0$ $=\sum^{\infty}nP_n$. $n=0$ ふ ヒルミオメや

 \dagger A sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.

- • Little's Law (守恒方程) is one of the most general and versatile laws in queueing theory.
	- It is named after John D.C. Little, who was the first to prove a version of it, in 1961.
	- When used in clever ways, Little's Law can lead to remarkably simple derivations.

Theorem 2 (Little's Law – Empirical Version)

Define the observed entering rate $\widehat{\lambda} := N(T)/T$, then $\widehat{L}(T) = \widehat{\lambda} \widehat{W}(T), \quad \widehat{L}_Q(T) = \widehat{\lambda} \widehat{W}_Q(T).$

Single-Station Queues **I Little's Law**

Single-Station Queues **I Little's Law**

• Verify Little's Law.

Figure: Illustration of $L(t)$ and W_i (from [Banks et al. \(2010\)](https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html))

• Why it always holds?

$$
\widehat{L}(T) = \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{T} \times \text{area.}
$$
\n
$$
\widehat{\lambda W}(T) = \frac{N(T)}{T} \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{T} \sum_{i=1}^{N(T)} W_i = \frac{1}{T} \times \text{area.}
$$
\nSo, $\widehat{L}(T) = \widehat{\lambda W}(T)$ always holds.

• The same argument for $L_O(T) = \lambda W_O(T)$.

Co BY-SA

Theorem 3 (Little's Law – Limit/Expectation Version)

For a stable queue, let λ^* denote the arrival rate or entering rate, then

$$
L=\lambda^*W, \quad L_Q=\lambda^*W_Q.
$$

Caution: When λ^* is the arrival rate, the time average (W, W_Q) is based on all customers (who enter the station or are lost); When λ^* is the entering rate, the time average is only based on the customers who enters the station.

• Some Remarks:

- For a customer who is lost (due to the finite capacity), he spends 0 amount of time in the station (or queue).
- Once we know anyone of L, W, $L_{\mathcal{O}}$ and $W_{\mathcal{O}}$, we can compute the rest using Little's Law.

- • $M/M/1$ Queue[†]
	- The interarrival times are iid random variables with $\text{Exp}(\lambda)$ distribution, that is to say, customers arrive according to a Poisson process with rate λ .
	- The service times are iid random variables with $Exp(\mu)$ distribution.
	- The customers [a](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)re served in an FCFS fashion by a *single* server.
	- The capacity is unlimited, i.e., waiting space is unlimited.
	- $M/M/1$ queue is stable if and only if $\lambda < \mu$.
	- Due to unlimited capacity, arrival rate $=$ entering rate.
- We now want to compute all the measures P_n , L, W, L_Q and W_Q .

 $[†]M/M/1$ Queue \subset *Birth and Death Process with Infinite Capacity* \subset Continuous-Time Markov Chain.</sup>

しみをねたき

$Single-Station$ Queues $M/M/1$ Queue

- Recall that L can be computed via $L = \sum_{n=0}^{\infty} n P_n$, where P_n has two interpretations:
	- Long-run proportion of time that the station contains exactly n customers:
	- Probability that there are exactly n customers in the station as time goes to infinity (or equivalently, in the steady state).
- Define the state as the the n[um](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)ber of customers in the system.
- The state space diagram is as follows:

Key Observation 1

Rate at which the process leaves state n

 $=$ Rate at which the pr[oc](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)ess enters state n .

Heuristic Proof.

- In any time interval, the number of transitions into state n must equal to within 1 the number of transitions out of state n . (Why?)
- Hence, in the long run, the rate into state n must equal the rate out of state n

Single-Station Queues $\longrightarrow M/M/1$ Queue

Key Observation 2

Rate at which the process leaves state $0 = P_0 \lambda$; Rate at which the process leaves state $n = P_n(\mu + \lambda)$, $n \ge 1$; Rate at which the process enters state $0 = P_1 \mu$; Rate at which the proce[s](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)s enters state $n = P_{n-1}\lambda + P_{n+1}\mu$, $n \geq 1$.

Fact

If X_1, \ldots, X_n are independent random variables, and $X_i \sim$ $\text{Exp}(\lambda_i)$, $i = 1, \ldots, n$, then

$$
\min\{X_1,\ldots,X_n\} \sim \text{Exp}(\lambda_1+\cdots+\lambda_n).
$$

(cc) BY-SA

Single-Station Queues $\longrightarrow M/M/1$ Queue

Theorem 4 (Limiting Distribution of $M/M/1$ Queue)

For an $M/M/1$ queue, when it is stable $(\lambda < \mu)$, its limiting (steady-state) distribution is given by

$$
P_n = (1 - \rho)\rho^n, \quad n \ge 0,
$$

where $\rho := \lambda/\mu < 1$. (ρ is called the server utilization.)

Proof. Due to Observations 1 & 2,

Rewriting these equations gives

$$
P_0 \lambda = P_1 \mu,
$$

\n
$$
P_n \lambda = P_{n+1} \mu + (P_{n-1} \lambda - P_n \mu), \quad n \ge 1.
$$

$\frac{1}{\sqrt{M}}$ Single-Station Queues $\sqrt{M/M/1}$ Queue

Recall that

$$
P_0 \lambda = P_1 \mu,
$$

\n
$$
P_n \lambda = P_{n+1} \mu + (P_{n-1} \lambda - P_n \mu), \quad n \ge 1.
$$

Or, equivalently,

$$
P_0 \lambda = P_1 \mu,
$$

\n
$$
P_1 \lambda = P_2 \mu + (P_0 \lambda - P_1 \mu) = P_2 \mu,
$$

\n
$$
P_2 \lambda = P_3 \mu + (P_1 \lambda - P_2 \mu) = P_3 \mu,
$$

\n
$$
P_n \lambda = P_{n+1} \mu + (P_{n-1} \lambda - P_n \mu) = P_{n+1} \mu, \quad n \ge 1.
$$

Let $\rho := \lambda / \mu \, \langle \, 1 \rangle$, solving in terms of P_0 yields $P_1 = P_0 \rho$ $P_2 = P_1 \rho = P_0 \rho^2$,

$$
P_n = P_{n-1}\rho = P_0\rho^n, \quad n \ge 1.
$$

Since $1 = \sum_{n=0}^{\infty} P_n = P_0 \sum_{n=0}^{\infty} \rho^n = P_0/(1-\rho)$, we have

 $P_0=1-\rho, \quad \text{and} \quad P_n=(1-\rho)\rho^n, \quad n\geq 1.$ (and $\text{and} \quad P_n=\text{and} \quad P_n=\text{and} \quad \text{and} \quad P_n=\text{and} \quad n\geq 1.$

CC BY-SA

Single-Station Queues $\longrightarrow M/M/1$ Queue

•
$$
L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n (1 - \rho) \rho^n = \frac{\rho}{1 - \rho}.
$$

• Using Little's Law, $W=L/\lambda=\frac{1}{\lambda}$ λ $\frac{\rho}{1-\rho}=\frac{1}{\mu-\lambda}.$

•
$$
L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n = \frac{\rho^2}{1-\rho}.
$$

- $\bullet\,$ Using Little's Law, $\,W_Q=L_Q/\lambda=\frac{1}{\lambda}$ λ $\frac{\rho^2}{1-\rho}=\frac{1}{\mu}$ μ $\frac{\rho}{1-\rho} = \frac{\rho}{\mu - \rho}$ $\frac{\rho}{\mu-\lambda}$.
- Or, $W_Q = W \mathbb{E}[\text{service time}] = \frac{1}{\mu \lambda} \frac{1}{\mu} = \frac{\lambda}{\mu(\mu \lambda)} = \frac{\rho}{\mu \lambda}$ $W_Q = W \mathbb{E}[\text{service time}] = \frac{1}{\mu \lambda} \frac{1}{\mu} = \frac{\lambda}{\mu(\mu \lambda)} = \frac{\rho}{\mu \lambda}$ $W_Q = W \mathbb{E}[\text{service time}] = \frac{1}{\mu \lambda} \frac{1}{\mu} = \frac{\lambda}{\mu(\mu \lambda)} = \frac{\rho}{\mu \lambda}$ $\frac{\rho}{\mu-\lambda}$.
- Using Little's Law, $L_Q = \lambda W_Q = \lambda \frac{\rho}{\mu \lambda} = \frac{\rho^2}{1 \mu}$ $\frac{\rho}{1-\rho}$.
- Due to unlimited capacity, arrival rate $=$ entering rate, so the time average (W, W_{Q}) is based on all customers.
- \mathbb{P} (the server is idle) = $P_0 = 1 \rho$.
- As $\rho \rightarrow 1$, all L, W, L_O and W_O tend to ∞ .

(1) 上 连 文 3 大 浮

- • $M/M/s$ Queuet
	- Customers arrive according to a Poisson process with rate λ .
	- The service times are iid random variables with $\text{Exp}(\mu)$ distribution.
	- There are s parallel servers.
	- The customers form a single queue and get served by the next available server in an FCFS [f](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)ashion.
	- The capacity is unlimited, i.e., waiting space is unlimited.
	- $M/M/s$ queue is stable if and only if $\lambda < s\mu$.
	- Due to unlimited capacity, arrival rate $=$ entering rate.
- $M/M/s$ queue is a generalized version of $M/M/1$ queue. Let $s = 1$, all results should degenerate to those of $M/M/1$.

 $†$ M/M/1 Queue $\subset M/M/s$ Queue \subset Birth and Death Process with Infinite Capacity \subset CTMC

ト海さる

• The state space diagram is as follows:

Theorem 5 (Limiting Distribution of $M/M/s$ Queue)

For an $M/M/s$ $M/M/s$ queue, when it is stable $(\lambda < s\mu)$, its limiting (steady-state) distribution is given by

$$
P_n = \left[\sum_{i=0}^s \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^i + \frac{s^s}{s!} \frac{\rho^{s+1}}{1-\rho}\right]^{-1} \rho_n , \quad n \ge 0,
$$

where the server utilization $\rho := \lambda/(s\mu) < 1$, and

$$
\rho_n \coloneqq \begin{cases} \frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^n, & \text{ if } 0 \leq n \leq s, \\ \frac{s^s}{s!}\rho^n, & \text{ if } n \geq s+1. \end{cases}
$$

Single-Station Queues $M/M/s$ Queue

•
$$
L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0 \rho_n = \sum_{k=0}^{\infty} k P_0 \rho_{s+k}
$$

= $\sum_{k=1}^{\infty} k P_0 \rho_s \rho^k = \sum_{k=1}^{\infty} k P_s \rho^k = \frac{P_s \rho}{(1-\rho)^2}$.

• Using Little's Law,
$$
W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{P_s \rho}{(1-\rho)^2} = \frac{P_s}{s\mu(1-\rho)^2}
$$
.

•
$$
W = W_Q + \mathbb{E}[\text{service time}] = \frac{P_s}{s\mu(1-\rho)^2} + \frac{1}{\mu}.
$$

• Using Little's Law,
\n
$$
L = \lambda W = \lambda (W_Q + \frac{1}{\mu}) = L_Q + \frac{\lambda}{\mu} = \frac{P_s \rho}{(1 - \rho)^2} + \frac{\lambda}{\mu}.
$$

• Due to unlimited capacity, arrival rate $=$ entering rate, so the time average (W, W_Q) is based on all customers.

• As
$$
\rho \to 1
$$
, all L, W, L_Q and W_Q tend to ∞ .

- • By letting $s \to \infty$ we get the $M/M/\infty$ queue as a limiting case of the $M/M/s$ queue.
- Note: $M/M/\infty$ queue is always stable! (The server utilization is always $0.$)
- All the measures can be obtained by letting $s \to \infty$ for those in the case of $M/M/s$ queue.^{[†](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)}

• Or, one can still derive P_n via the state space diagram:

Theorem 6 (Limiting Distribution of $M/M/\infty$ Queue)

For an $M/M/\infty$ queue, its limiting (steady-state) distribution is given by

$$
P_n = e^{-\lambda/\mu} \frac{(\lambda/\mu)^n}{n!}, \quad n \ge 0.
$$

- In steady state, the number o[f](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) customers in an $M/M/\infty$ station \sim Poisson(λ/μ).
- Hence, $L=\sum_{n=0}^\infty n P_n=\mathbb{E}\left[$ Poisson RV with mean $\frac{\lambda}{\mu}\right]=\frac{\lambda}{\mu}$ $\frac{\lambda}{\mu}$.
- Using Little's Law, $W = L/\lambda = \frac{1}{\mu}$ $\frac{1}{\mu}$.

•
$$
L_Q = 0
$$
, $W_Q = 0$.

Cc) BY-SA

上海交通大學

- • $M/M/1/K$ Queue[†]
	- Customers arrive according to a Poisson process with rate λ .
	- The service times are iid random variables with $Exp(\mu)$ distribution.
	- The customers are served in an FCFS fashion by a *single* server.
	- The capacity is $K, K \geq 1$, i.e., the maximal number of customers waiting in queue $+$ customers in server $\leq K$.
	- A customer who finds the s[ta](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)tion is full $(K$ customers there) leaves immediately (lost).
	- The entering rate, denoted as λ_e , is smaller than the arrival rate λ .
	- It is always stable (due to the finite capacity).
- In steady state
	- P(station is full) = P_K .
	- Entering rate $\lambda_e = \lambda(1 P_K)$.

 † M/M/1/K Queue \subset Birth and Death Process with Finite Capacity \subset Continuous-Time Markov Chain.

上海文百大學

• The state space diagram is as follows:

Theorem 7 (Limiting Distributi[on](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) of $M/M/1/K$ Queue)

For an $M/M/1/K$ queue, its limiting (steady-state) distribution is given by

$$
P_n = \begin{cases} \frac{(1-\rho)\rho^n}{1-\rho^{K+1}}, & \text{if } \rho \neq 1, \\ \frac{1}{K+1}, & \text{if } \rho = 1, \end{cases} \quad 0 \le n \le K,
$$

where $\rho := \lambda/\mu$. (ρ is NOT the server utilization!)

上海交通

Proof. Due to Observations 1 & 2,

State **Rate Process Leaves** Rate Process Enters 0 $P_0\lambda = P_1\mu$ $n, 1 \leq n \leq K-1$ $P_n(\mu+\lambda)$ = $P_{n-1}\lambda + P_{n+1}\mu$ K $P_K \mu = P_{K-1} \lambda$

Rewriting these equations gives

$$
P_0 \lambda = P_1 \mu,
$$

\n
$$
P_n \lambda = P_{n+1} \mu + (P_{n-1} \lambda - P_n \mu), \quad 1 \le n \le K - 1,
$$

\n
$$
P_K \mu = P_{K-1} \lambda.
$$

Single-Station Queues $M/M/1/K$ Queue

Or, equivalently,

$$
P_0 \lambda = P_1 \mu,
$$

\n
$$
P_1 \lambda = P_2 \mu + (P_0 \lambda - P_1 \mu) = P_2 \mu,
$$

\n
$$
P_2 \lambda = P_3 \mu + (P_1 \lambda - P_2 \mu) = P_3 \mu,
$$

\n
$$
P_n \lambda = P_{n+1} \mu + (P_{n-1} \lambda - P_n \mu) = P_{n+1} \mu, \quad 1 \le n \le K - 2,
$$

\n
$$
P_{K-1} \lambda = P_K \mu.
$$

Let $\rho = \lambda/\mu$, solving in terms of P_0 yields $P_1 = P_0 \rho$ $P_2 = P_1 \rho = P_0 \rho^2$, $P_n = P_{n-1}\rho = P_0\rho^n, \quad 1 \le n \le K.$ $\int P_0 \frac{1-\rho^{K+1}}{1-\rho}$ $\frac{-\rho^{2}+1}{1-\rho}$, if $\rho \neq 1$, Since $1 = \sum_{n=0}^{K} P_n = P_0 \sum_{n=0}^{K} \rho^n =$ we have, $P_0(K + 1)$, if $\rho = 1$, if $\rho \neq 1$, $P_0 = \frac{1-\rho}{1-\rho^{K+1}}$, and $P_n = \frac{(1-\rho)\rho^n}{1-\rho^{K+1}}$, $1 \leq n \leq K$; if $\rho = 1$, $P_0 = \frac{1}{K+1}$, and $P_n = \frac{1}{K+1}$, $1 \le n \le K$. CC BY-SA [SHEN Haihui](https://shenhaihui.github.io/) [MEM6810 Modeling and Simulation, Lec 3 Spring 2023 \(full-time\)](#page-0-0) 48 / 64

Single-Station Queues $M/M/1/K$ Queue

• If
$$
\rho \neq 1
$$
,
\n
$$
L = \sum_{n=0}^{K} n P_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n \rho^n
$$
\n
$$
= \frac{1-\rho}{1-\rho^{K+1}} \frac{\rho - (K+1)\rho^{K+1} + K\rho^{K+2}}{(1-\rho)^2} = \frac{\rho}{1-\rho} \frac{1 - (K+1)\rho^{K} + K\rho^{K+1}}{1-\rho^{K+1}}.
$$

• If
$$
\rho = 1
$$
,
\n
$$
L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{1}{K+1} = \frac{1}{K+1} \frac{(K+1)K}{2} = \frac{K}{2}.
$$

• P(station is full) = P_K .

- Entering rate $\lambda_e = \lambda(1 P_K)$.
- The server utilization $= \lambda_e/\mu = \rho(1 P_K)$.
- As $\rho \to \infty$, $L \to K$, $1 P_K \to 0$, $\rho(1 P_K) \to 1$.

1 上海文通大学

Single-Station Queues $M/M/1/K$ Queue

- For those entered the station
	- The expected sojourn time $W = L/\lambda_e = \frac{L}{\lambda(1-P_K)}$.
	- The expected waiting time $W_Q = W \frac{1}{\mu} = \frac{L}{\lambda(1-P_K)} \frac{1}{\mu}$.
- For ALL the arrivals (those who are lost have 0 sojourn time and waiting time)
	- The expected sojourn time $W' = (1 P_K)W + 0 = \frac{L}{\lambda}$.
	- The expected waiting time $W'_Q = (1 P_K)W_Q + 0 = \frac{L}{\lambda} \frac{1 P_K}{\mu}$ $W'_Q = (1 P_K)W_Q + 0 = \frac{L}{\lambda} \frac{1 P_K}{\mu}$.
- The expected queue length $L_Q = \lambda_e W_Q = L \rho(1 P_K)$, or, $=\lambda W_Q' = L - \rho(1 - P_K)$.
- As $\rho \to \infty$, $1 P_K \to 0$, $\rho(1 P_K) \to 1$, $L \to K$, $L_O \to K 1$.
	- If μ is fixed and $\lambda \to \infty$: $\lambda(1 - P_K) \to \mu$, $W \to \frac{K}{\mu}$, $W_Q \to \frac{K-1}{\mu}$, $W' \to 0$, $W'_Q \to 0$.
	- If λ is fixed and $\mu \to 0$: $\frac{1}{\mu}(1-P_K)\rightarrow\frac{1}{\lambda}$, $W\rightarrow\infty$, $W_Q\rightarrow\infty$, $W'\rightarrow\frac{K}{\lambda}$, $W_Q'\rightarrow\frac{K-1}{\sqrt{\lambda}}$.
- \bullet $M/M/s/K$ queue † is a generalized version of $M/M/1/K$ queue. $(K > s)$
- The state space diagram is as follows:

- Let $s = 1$, it becomes the $M/M/1/K$ queue.
- Let $s = K$, it becomes the $M/M/K/K$ queue.
- There is no $M/M/\infty/K$ queue!

 $†$ M/M/1/K Queue \subset M/M/s/K Queue \subset Birth and Death Process with Finite Capacity \subset

ト海さる

Single-Station Queues $\blacktriangleright M/M/s/K$ Queue

Theorem 8 (Limiting Distribution of $M/M/s/K$ Queue)

For an $M/M/s/K$ queue, its limiting (steady-state) distribution is given by

$$
P_n = \left[\sum_{i=0}^s \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^i + \varrho\right]^{-1} \rho_n, \quad 0 \le n \le K,
$$

where $\rho := \lambda/(s\mu)$, (ρ is NOT the server utilization!) and

$$
\varrho := \begin{cases} \frac{s^s}{s!} \frac{s^{s+1}(1-\rho^{K-s})}{1-\rho}, & \text{if } \rho \neq 1, \\ \frac{s^s}{s!}(K-s), & \text{if } \rho = 1, \end{cases}
$$

and

$$
\rho_n \coloneqq \begin{cases} \frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^n, & \text{ if } 0 \leq n \leq s, \\ \frac{s^s}{s!}\rho^n, & \text{ if } s+1 \leq n \leq K, \, K \geq s+1. \end{cases}
$$

The server utilization $=\lambda_e/(s\mu) = \rho(1 - P_K)$.

 $Single-Station$ Queues $M/G/1$ Queue

- $M/G/1$ Queue[†]
	- Customers arrive according to a Poisson process with rate λ .
	- The service times are iid random variables with arbitrary distribution (mean: $\frac{1}{\mu}$, variance: σ^2).
	- The customers are served in an FCFS fashion by a *single* server.
	- The capacity is unlimited, i.e., waiting space is unlimited.
	- $M/G/1$ queue is stable if and only if $\lambda < \mu$.

• Let
$$
m^2 := \left(\frac{1}{\mu}\right)^2 + \sigma^2
$$
, and the server utilization $\rho := \lambda/\mu < 1$.

•
$$
\mathbb{P}(\text{the server is idle}) = 1 - \rho.
$$

•
$$
W_Q = \frac{\lambda m^2}{2(1-\rho)}.
$$

•
$$
L_Q = \lambda W_Q = \frac{\lambda^2 m^2}{2(1-\rho)}
$$
.

•
$$
W = W_Q + \frac{1}{\mu} = \frac{\lambda m^2}{2(1-\rho)} + \frac{1}{\mu}
$$
.

•
$$
L = \lambda W = L_Q + \lambda/\mu = \frac{\lambda^2 m^2}{2(1-\rho)} + \rho.
$$

• For $M/G/\infty$, the measures are the same as those in $M/M/\infty$.

 † $M/G/1$ queue has an embedded discrete-time Markov chain.

[Queueing Systems and Models](#page-2-0) \blacktriangleright [Introduction](#page-3-0) ▶ [Characteristics & Terminology](#page-16-0) [Kendall Notation](#page-21-0) [Poisson Process](#page-22-0) \blacktriangleright [Definition](#page-23-0) \blacktriangleright [Properties](#page-26-0) **[Single-Station Queues](#page-30-0)** \blacktriangleright [Notations](#page-31-0) [General Results](#page-36-0) \blacktriangleright [Little's Law](#page-39-0) $\blacktriangleright M/M/1$ $\blacktriangleright M/M/1$ $\blacktriangleright M/M/1$ Queue $\blacktriangleright M/M/s$ $\blacktriangleright M/M/s$ Queue \blacktriangleright $M/M/\infty$ $M/M/\infty$ Queue $\blacktriangleright M/M/1/K$ $\blacktriangleright M/M/1/K$ $\blacktriangleright M/M/1/K$ Queue $\blacktriangleright M/M/s/K$ $\blacktriangleright M/M/s/K$ Queue $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ $\blacktriangleright M/G/1$ Queue 4 [Queueing Networks](#page-64-0)

 \blacktriangleright [Jackson Networks](#page-66-0)

Queueing Networks

- Queueing Network (multiple-station queueing system)
	- Customers can move from one station to another (for different service), before leaving the system.

Figure: Illustration of Queueing Networks

Queueing Networks **I Acknowledge Contract Contract**

- Jackson Queueing Network (first identified by Jackson $(1963)]^{\dagger}$
	- \bullet The network has J single-station queues.
	- The *i*th station has s_i servers and a *single* queue.
	- **3** There is unlimited waiting space at each station (infinite capacity).
	- \bullet Customers arrive at station i from outside according to a Poisson process with rate λ_i ; all arrival processes are independent of each other.
	- \bullet The service times at station i are iid random variables with $Exp(\mu_i)$ distribution.
	- \bullet Customers finishing service at station i join the queue (if any) at station j with routing probability p_{ij} , or leave the network with probability p_{i0} , independently of each other.
	- 7 A customer finishing service may be routed to the same station (i.e., re-enter).

 † Jackson network is an *J*-dimensional continuous-time Markov chain.

.

Queueing Networks **I Acknowledge Contract Contract**

• The routing probabilities p_{ij} can be put in a matrix form as follows: Е \blacksquare

$$
\boldsymbol{P} := \left[\begin{array}{cccc} p_{11} & p_{12} & p_{13} & \cdots & p_{1J} \\ p_{21} & p_{22} & p_{23} & \cdots & p_{2J} \\ p_{31} & p_{32} & p_{33} & \cdots & p_{3J} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{J1} & p_{J2} & p_{J3} & \cdots & p_{JJ} \end{array}\right]
$$

- The matrix P is called the **routing matrix**.
- Since a customer leaving station i either joints some other station, or leaves, we must have

$$
\sum_{j=1}^{J} p_{ij} + p_{i0} = 1, \quad 1 \le i \le J.
$$

Queueing Networks **I Acknowledge Contract Contract**

• Example 1: Tandem Queue

• Example 2: General Network

Queueing Networks **I Acknowledge Contract Contract**

- Recall that customers arrive at station i from outside with rate λ_i .
- Let b_i be the rate of internal arrivals to station j.
- Then the total arrival rate to station j, denoted as a_j , is given by $a_j = \lambda_j + b_j, \quad 1 \leq j \leq J.$

• If the stations are all stable

- The departure rate of customers from station i will be the same as the total arrival rate to station i , namely, $a_i.$
- The arrival rate of internal customers from station i to station i is $a_i p_{ii}$.
- Hence, $b_j = \sum_{i=1}^J a_i p_{ij}$, $1 \le j \le J$.
- Substituting in the pervious equation, we get the **traffic** equations: $a_j = \lambda_j + \sum_{i=1}^J a_i p_{ij}, \quad 1 \le j \le J.$

Queueing Networks **Internal Stability** Stability

• Let $\boldsymbol{a}^{\intercal} = [a_1 \ a_2 \ \cdots \ a_J]$ and $\boldsymbol{\lambda}^{\intercal} = [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_J]$, the traffic equations can be written in matrix form as

$$
\boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} + \boldsymbol{a}^{\mathsf{T}} \boldsymbol{P},
$$

or

$$
a^{\mathsf{T}}(\boldsymbol{I}-\boldsymbol{P})=\boldsymbol{\lambda}^{\mathsf{T}},
$$

where I is the $J \times J$ identity [m](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)atrix.

• Suppose the matrix $I - P$ is invertible, the above equation has a unique solution given by

$$
\boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1}.
$$

• The next theorem states the stability condition for Jackson networks in terms of the above solution.

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector λ and routing matrix P is stable if: (1) $I - P$ is invertible; and $\left(2\right) \,a_{i}< s_{i}\mu_{i}$ for all $i=1,2,\,\ldots,J,$ where a_{i} is given by the traffic equations.

• Example 1: Tandem Queue

$$
P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdot \lambda = \begin{bmatrix} 10 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{a}^{\mathsf{T}} = \lambda^{\mathsf{T}} (\mathbf{I} - \mathbf{P})^{-1} = \begin{bmatrix} 10 & 10 & 10 \\ 0 & 1 & 10 \\ 0 & 0 & 0 \end{bmatrix}.
$$
 Stable.
Queueing Networks **International Community** Examples

• Example 2: General Network

$$
\boldsymbol{\lambda} = \begin{bmatrix} 8 \\ 1 \\ 3 \end{bmatrix}, \quad \boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1} = [8\ 10.7\ 9.9] \Rightarrow \text{Stable}.
$$

If λ_2 is increased to 4,

$$
\boldsymbol{\lambda} = \left[\begin{array}{c} 8 \\ 4 \\ 3 \end{array} \right], \quad \boldsymbol{a}^{\intercal} = \boldsymbol{\lambda}^{\intercal} (\boldsymbol{I} - \boldsymbol{P})^{-1} = [8 \; 14.6 \; 11.6] \Rightarrow \text{Unstable},
$$

- Let $L_i(t)$ be the number of customers in the *j*th station in a Jackson network at time t .
- Then the state of the network at time t is given by $[L_1(t), L_2(t), \ldots, L_J(t)].$
- When the Jackson network is [s](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)table, the limiting distribution of the sate of the network is

$$
P(n_1, n_2,..., n_J) = \lim_{t \to \infty} \mathbb{P}\{L_1(t) = n_1, L_2(t) = n_2,..., L_J(t) = n_J\}.
$$

• It is a joint probability.

Queueing Networks **I Limiting Behavior**

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) distribution is given by

$$
P(n_1, n_2, \ldots, n_J) = P_1(n_1) P_2(n_2) \cdots P_J(n_J),
$$

for $n_j = 0, 1, 2, ...$ and $j = 1, 2, ..., J$, where $P_i(n)$ is the limiting probability that there are n customers in an $M/M/s_i$ queue with arrival rate a_i and [se](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)rvice rate μ_i .

- The limiting **joint** distribution of $[L_1(t), \ldots, L_J(t)]$ is a **product** of the limiting **marginal** distribution of $L_i(t)$, $j = 1, \ldots, J$. \Rightarrow Limiting behavior of all stations are independent of each other.
- The limiting distribution of station j is the same as that in an **isolated** $M/M/s_i$ queue with arrival rate a_i and service rate μ_i . (a_i) 's are solved from the **traffic equations**.) 上海交通大学